THE REINVENTION OF AVIATION


Team Revelation

Meet Team Revelation

Minju

Research Lead

Ximena

Researcher & Graphic Designer

Andrés

Team Lead & Software Developer

Researcher & Graphic Designer

Yusuf

Quality Assurance What was your last air travel experience like?

TAKEAWAY

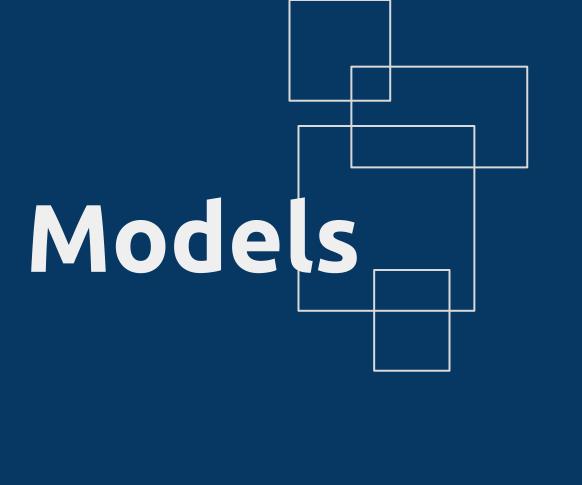
To recover from the disruption of Covid-19, the aviation industry must be reinvented.

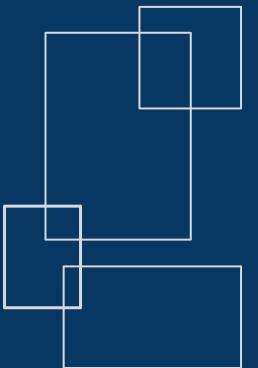
NASA must focus on: passenger satisfaction, sustainability, and collaboration.

Overview

- 1 Setting the Stage
 The stability of the aviation industry before the pandemic
- Models
 Current and future trends of the disruption in demand
- 3 Literature Review

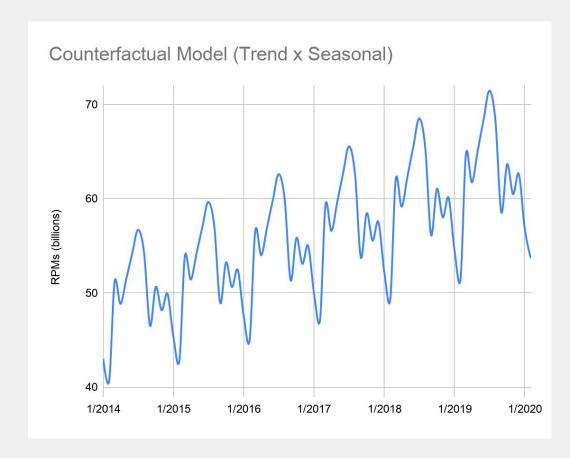
 Develop an outlook for aviation sectors
- Recommendations


 NASA's role in recovery & the path to reinvention
- Website Demo
 Display of our website & additional resources for our work


Setting the Stage

Industry Pre Covid

- Prior to 2020, the industry was experiencing stable growth
- Although the industry went through devastating crises, it has always managed to recover

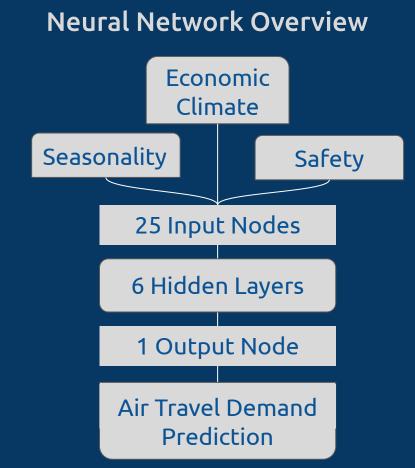


Purpose

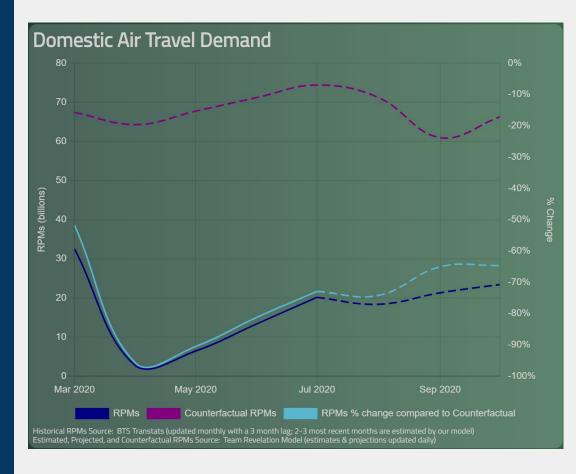
- To what extent did Covid-19 impact domestic air travel demand?
- What is the outlook for air travel in the coming months?
- To answer these questions, we developed a counterfactual statistical model and a predictive neural network model

Counterfactual Model

- Multiplicative decomposition
- Trend and seasonal components used to make predictions
- Used as a reference


Predictive Model

Air travel demand can be predicted with 3 main factors



Complex relationship can be learned with the neural network

Results

- In April, air travel demand bottomed out at 4.0%
- Demand recovery disrupted by summer spike
- 35.2% recovery by October

Sectors

Passenger Travel

Up until 2019, passenger travel demand flourished while the passenger experience suffered

- Inefficient system
 - \rightarrow Flight cancellations
 - → Excessive crowding
 - → Cramped flight seating
 - High load factor
 - → Overbooking

Source: Nanashinodensvaku

Passenger Travel

Covid-19 has caused sweeping impacts on airlines

- Air travel is no longer seen
 as safe and trusted
- Plunge in demand
- Huge losses of money

Source: Gerald Friedrich

Passenger Travel

- Systems have currently made small changes...
 - Social distancing on flights
 - Electromagnetic spraying
- Need for new developments

These changes must be expanded. Technological advances are needed to revive demand.

Source: Chris Rank

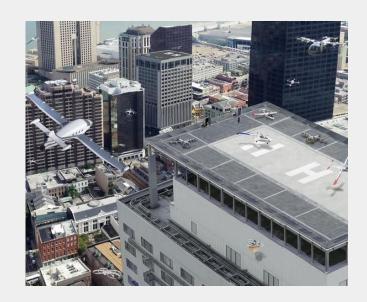

Air Freight

E-commerce has surged

- Shift towards online shopping and need for emergency deliveries
 - → Rise in "panic buying"
- Reconfiguration of passenger aircraft for freight
- Opened a window for **UAM** to play a significant role

Source: Patrick Campanale

Urban Air Mobility (UAM)



- UAM was a new yet thriving industry with lots of predicted growth
- Autonomous Aerial Vehicles (AAVs) & delivery drone usage has increased during the pandemic
 - Growth in ecommerce
 - Drones could *replace* existing last-mile delivery services

Urban Air Mobility (UAM)

- Public acceptance of UAM has grown
 - Past concerns: safety and autonomy
- Work is still needed to be done
 - UAM needs to be safe,
 comfortable, & affordable

Source: NASA

Commercial Aircraft Manufacturing

Aviation manufacturing was in state of decline prior to 2020

- Boeing 737 MAX grounding
 - → Careless innovation
 - \rightarrow What needs to change?
- Manufacturing levels expected to grow in 2020

Source: Bruce Englehardt

Commercial Aircraft Manufacturing

- 7
- Pandemic has intensified problems from before
 - Production rates further reduced and paused
- Wide-body aircraft are being retired
- Market for commercial aircraft will look different
 - Industry needs to reinvent itself
 - → Innovation process needs to change for safer flights

National Airspace System Infrastructure

COVID-19 effects on the NAS (National Airspace System)

- Airports have lost more than 50% of passenger traffic, over 97 billion dollars
- 41.3% flight cancellation rate in April
- 750, 000 people are employed by the industry

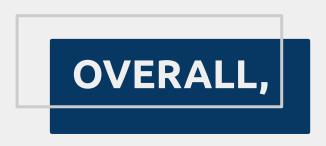
Source: **Dominic Hart**

- **CARES** act will fund airports
 - Better safety
 - Infrastructure improvements
- NextGen
 - FAA's pursuit in modernizing the NAS.
 - More efficient and safe
- NASA System-Wide Safety (SWS)
 - Research towards advanced aviation system, technology, automation and strategies that will assure safety in the industry

Environment

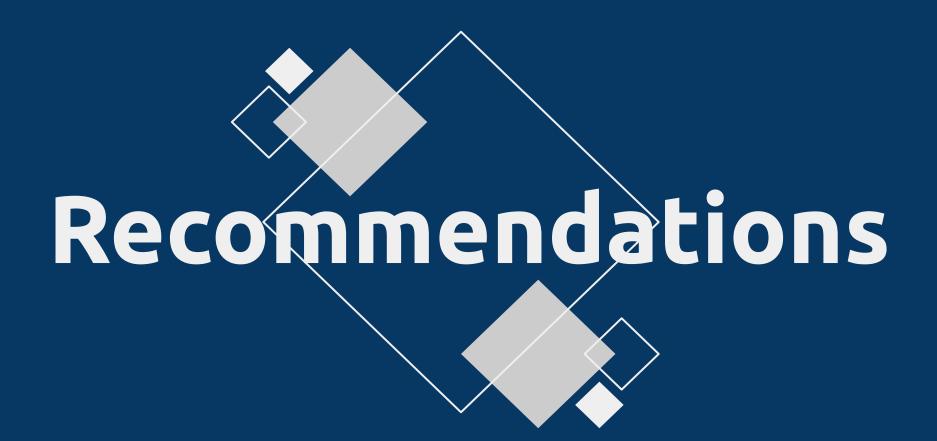
Aviation has an enormous environmental impact

- Contributes to climate change and harms human health
- Global aviation produced 915 million metric tons of CO2 in 2019 → equivalent to driving 200 million passenger vehicles
- Growing overall operations and little improvement in sustainability
- Various goals relating to: aircraft noise, air quality, energy use, and water quality


Environment

Severity of the problem:

- UN declared that the globe has 10 years before the effects of climate change are irreversible
- The industry is on track to triple its emissions by 2050
- Large anticipated increase in overall aviation operations due to UAM


The future of aviation is *sustainable* aviation.

The effects of Covid-19 on aviation are widespread and persistent.

But they have created a unique opportunity for change.

Instead of returning to its former state, the industry must pave a path towards **reinvention** - the only way to ensure *lasting* recovery.

Recommendations

NASA must take significant action to support the reinvention of aviation, accelerating innovation in:

Sustainability and Passenger Satisfaction,

and increasing **Collaboration** to ensure the prompt *reinvention*.

Recommendations - Sustainability

NASA must "transition to <u>zero</u> carbon propulsion".

Consideration of sustainability across all projects and programs

Develop both evolutionary and revolutionary aircraft, plus operational change

Source: NASA

Recommendations - Passenger Satisfaction

Fast and convenient technologies geared towards **efficiency** will shorten flight lengths and improve system issues, benefiting **passenger experience**.

These technologies are useless without carefully planned systems of integration that allow them to function in the real world.

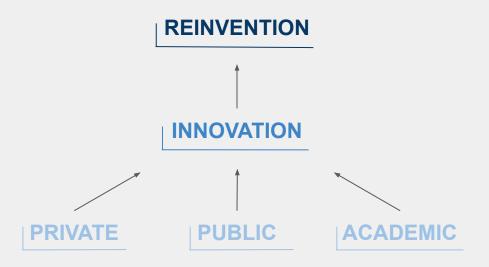
Sustainable supersonic aircraft are the future.

Recommendations - Passenger Satisfaction

Air travel is seen as a *threat* to safety. For this to change, a *shift* to non-contact, automated technologies is **crucial**.

In light of Covid-19, NASA has been working with hospitals to develop technologies that address the dangerous virus.

NASA must similarly **collaborate** to develop technologies for airlines that mitigate health risks, ensuring **safety**.


Recommendations - Collaboration

Industry reinvention is difficult. How do we get there?

"All hands on deck" mindset:

NASA must provide a **platform** for a variety of different partners (traditional and non-traditional) to **innovate.**

Recommendations - Collaboration

Recommendations - Collaboration

The innovation cycle of aviation is notoriously slow, and must be **accelerated**.

This is crucial in reinventing the industry. However, it must be done *responsibly*.

IN CONCLUSION,

Reinvention not regression.

NASA must pave the way for **innovation**, and focus on:

Passenger Satisfaction, Sustainability, and Collaboration

Website

Thank You!

References

- Nanashinodenyaku. "The Crowded Departure Lobby of Tokyo-Narita Airport Terminal 2." Wikimedia Commons, 28 Dec. 2014,
 commons.wikimedia.org/wiki/File:The_crowded_departure_lobby_of_Tokyo-Narita_Airport_Terminal_2.J
 PG, Creative Commons Attribution-ShareAlike 4.0 International License
 https://creativecommons.org/licenses/by-sa/4.0/ (Free to share and adapt for commercial use.
 Attribution and ShareAlike required.)
- Friedrich, Gerald. "Airport during Covid-19 Pandemic." Pixabay, 11 May 2020, pixabay.com/images/id-5148746/, Pixabay License https://pixabay.com/service/license/ (Free for commercial use. No attribution required)
- Rank, Chris. "DAL_DISINFECT_20." *Flickr*, 6 Mar. 2020, flic.kr/p/2iDYZFu, Creative Commons 2.0 Generic License https://creativecommons.org/licenses/by/2.0/ (Free to share and adapt for commercial use. Attribution required.)
- Campanale, Patrick. "British Airways 747 Preparing to Leave for London from Chicago." *Unsplash*, 14 Oct. 2019, unsplash.com/photos/oCsQLKENz34, Unsplash License https://unsplash.com/license (Free for commercial use. No attribution required.)

References

- "UAM." *NASA*, 7 Nov. 2017, images.nasa.gov/details-UAM.
- Englehardt, Bruce. "Boeing 737 MAX Grounded Aircraft near Boeing Field, April 2019." Wikimedia Commons, 24 Apr. 2019,
 commons.wikimedia.org/wiki/File:Boeing_737_MAX_grounded_aircraft_near_Boeing_Field,_April_2019.j
 pg, Creative Commons Attribution-ShareAlike 4.0 International License
 https://creativecommons.org/licenses/by-sa/4.0/ (Free to share and adapt for commercial use.
 Attribution and ShareAlike required.)
- Hart, Dominic. "ARC-2009-ACD09-0097-4." NASA Image and Video Library, 29 May 2009, images.nasa.gov/details-ARC-2009-ACD09-0097-4.
- "Boundary Layer Ingestion." *NASA Image and Video Library*, 15 Dec. 2016, images.nasa.gov/details-GRC-2016-C-10113.
- "NASA Hybrid Wing Body." NASA, 14 Feb. 2013, www.nasa.gov/content/hybrid-wing-body-goes-hybrid.

Questions?